Pathogenic Gram-Negative Cocci and Bacilli
Gram-Negative Bacteria

• Constitute largest group of human bacterial pathogens
 • Due in part to lipid A in the bacterial cell wall
 • Triggers fever, vasodilation, inflammation, shock, and disseminated intravascular coagulation (DIC)
• Most Gram-negative bacteria that breach skin or mucous membranes, grow at 37°C, and evade the immune system can cause disease in humans
Pathogenic Gram-Negative Cocci: *Neisseria*

- **Structure and Physiology of *Neisseria***
 - Only genus of Gram-negative cocci that regularly causes disease in humans
 - Aerobic, nonmotile, arranged as diplococci
 - Oxidase positive
 - Distinguishes from many other Gram-negative pathogens
 - Pathogenic strains have fimbriae, a polysaccharide capsule, and a cell wall containing lipid A
 - Two species are pathogenic to humans:
 - *N. gonorrhoeae*
 - *N. meningitidis*
Pathogenic Gram-Negative Cocci: *Neisseria*

- **The Gonococcus:** *Neisseria gonorrhoeae*
 - **Pathogenesis, Epidemiology, and Disease**
 - **Causes** gonorrhea
 - Only occurs in humans
 - Sexually transmitted disease
 - Increased risk of infection with increasing sexual encounters
 - Most cases in the United States occur in adolescents
 - Cases have declined over the past decades
 - More common in females than in males
Figure 20.3 Incidence of gonorrhea in the United States.
Pathogenic Gram-Negative Cocci: *Neisseria*

- **The Gonococcus: *Neisseria gonorrhoeae***
 - Pathogenesis, Epidemiology, and Disease
 - Gonorrhea in men
 - Inflammation causes painful urination and pus-filled discharge
 - Gonorrhea in women
 - Often asymptomatic
 - Can trigger pelvic inflammatory disease
 - Infections can occur outside the reproductive tract
 - Cause proctitis, pharyngitis, and gingivitis
 - Infection of the cornea or respiratory tract of newborns can occur during childbirth
The Gonococcus: *Neisseria gonorrhoeae*

- **Diagnosis, Treatment, and Prevention**
 - **Diagnosis**
 - Asymptomatic cases identified with genetic probes
 - Gram-negative diplococci in pus from inflamed penis
 - **Treatment**
 - Complicated due to resistant strains
 - Broad-spectrum intramuscular cephalosporins
 - **Prevention**
 - Sexual abstinence, monogamy, and proper condom use
 - Eye infections in newborns prevented with antimicrobials
Pathogenic Gram-Negative Cocci: *Neisseria*

- **The Meningococcus: *Neisseria meningitidis***
 - Pathogenicity, Epidemiology, and Disease
 - Most common cause of meningitis in individuals under 20 years of age
 - Can be normal microbiota of the upper respiratory tract
 - Bacteria transmitted by respiratory droplets among people living in close contact
 - Meningitis can cause death within 6 hours of symptoms
 - Meningococcal septicemia can also be life threatening
Figure 20.4 Petechiae in meningococcal septicemia.
Pathogenic Gram-Negative Cocci: *Neisseria*

- **The Meningococcus: *Neisseria meningitidis***
 - Diagnosis, Treatment, and Prevention
 - **Diagnosis**
 - Rapid diagnosis critical
 - Gram-negative diplococci in phagocytes of the CNS
 - **Treatment**
 - Immediate administration of intravenous penicillin
 - **Prevention**
 - Asymptomatic carriers make eradication unlikely
 - Vaccine against some meningococcal strains is available
Pathogenic, Gram-Negative, Aerobic Bacilli

• **Bordetella**
 - Pathogenesis, Epidemiology, and Disease
 - Small, aerobic, nonmotile coccobacillus
 - *B. pertussis* is the most important
 - Causes pertussis (whooping cough)
 - Most cases of disease are in children
 - Adhesins and toxins mediate the disease
 - *Pertussis toxin*
 - *Adenylate cyclase toxin*
 - *Dermonecrotic toxin*
 - *Tracheal cytotoxin*
 - Bacteria inhaled in aerosols multiply in epithelial cells
Figure 20.23 Reported cases of pertussis in the United States, 1960–2014.
Figure 20.25 The approximate time course for the progression of pertussis.

- **Incubation**: No symptoms
- **Catarrhal**: Rhinorrhea, sneezing, malaise, fever
- **Paroxysmal**: Repetitive cough with whoops, vomiting, exhaustion
- **Convalescent**: Diminishing cough, possible secondary complications

<table>
<thead>
<tr>
<th>Time in weeks</th>
<th>Incubation</th>
<th>Catarrhal</th>
<th>Paroxysmal</th>
<th>Convalescent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No symptoms</td>
<td>Rhinorrhea</td>
<td>Repetitive</td>
<td>Diminishing</td>
</tr>
<tr>
<td>2</td>
<td>Rhinorrhea</td>
<td>sneezing</td>
<td>cough with</td>
<td>cough</td>
</tr>
<tr>
<td>3</td>
<td>malaise</td>
<td>whoops</td>
<td>vomiting,</td>
<td>possible</td>
</tr>
<tr>
<td>4</td>
<td>fever</td>
<td>exhaustion</td>
<td>exhaustion</td>
<td>secondary</td>
</tr>
</tbody>
</table>

Relative number of bacteria involved in interaction
Pathogenic, Gram-Negative, Aerobic Bacilli

• **Bordetella**
 • Diagnosis, Treatment, and Prevention
 • Diagnosis
 • Pertussis symptoms usually diagnostic
 • Treatment
 • Primarily supportive
 • Prevention
 • Immunization with diphtheria, tetanus, attenuated pertussis (DTaP) or Tdap vaccine
Pathogenic, Gram-Negative, Aerobic Bacilli

• **Pseudomonads**

 • *Pseudomonas aeruginosa*

 • Rarely part of normal human microbiota
 • Rarely causes disease
 • Despite producing various virulence factors
 • Fimbriae, adhesins, capsule, toxins, and enzymes
 • Opportunistic infections in immunocompromised patients
 • Can colonize almost any organ or system
 • Also infects the lungs of cystic fibrosis patients
 • Biofilm protects bacteria from phagocytosis
 • Treatment is difficult due to drug resistance
Figure 20.26 A *Pseudomonas aeruginosa* infection.